

## **Agenda**

- Description of the Nanoscale Science Centers (NSRC's)
- NSRC's "Approach Document to Nanomaterial ESH" best practice document
- Risk Communication
- Summary







#### What are the NSRCs?

• The Nanoscale Science Research Centers funded by Office of Science (SC) as DOE's contribution to National Nanotechnology Initiative (NNI).

- The NSRCs are scientific <u>user facilities</u>
  - Designed and built beginning approximately 2002 - present
  - Conventional facilities completed
  - Instrument installation and commissioning underway or complete
  - Some level of user operations underway
  - Research and Development small scale











## NNI Centers and User Facilities











## **NSRC Approach Document Purpose**

- ➤ Provide guidance that will help the NSRCs develop <u>site-specific</u> <u>controls</u> to protect workers and the environment.
- ➤ Help ensure that <u>unwarranted assumptions</u> are not made about the risks posed by nanomaterials.
- ➤ Offer <u>reasonable guidance</u> for:
  - Managing the uncertainty associated with nanomaterials whose hazards have not been determined and
  - Reducing to an acceptable level the risk of:
    - ➤ Worker injury,
    - ➤ Worker ill-health and
    - ➤ Negative environmental impacts.
- ➤ <u>Promote consistency</u> in policy and procedures between the NSRCs.









## **DOE Secretarial Policy**

DOE recognized the importance of working safely with nanomaterials and issued a policy requiring all laboratory work be conducted in accordance with said policy.

All work with nanomaterials must be conducted in a safe and responsible manner that **protects workers**, the public and the environment.

Stay abreast of current research and guidance; ensure **best current knowledge** is applied to ID and Control hazards from nanomaterials.

DOE will **Adopt and Implement** existing and future **best ESH practice** (Consensus and/or Regulatory Standards). Apply existing related ESH requirements.











#### Nanomaterials - Unknown Risks

# Some nanomaterials pose potential ESH concerns because they behave unconventionally;

- Toxicology is not well understood
- Acute and chronic effects in the body not identified
- Exposure standards do not exist
- Some nano materials are more reactive
- Detection methods are limited for the nano range
- Fate in the environment is not well understood









### **Toxicity – Emerging Information**

- Depends on chemistry, morphology, surface charges, etc.
- Probably relates to particle surface area especially for insoluble/low soluble
- Preliminary Research has shown:
  - Increased inflammatory response (in vivo)
  - Translocation to target organs (rodents)
  - •Allergic asthma like symptoms
  - Aggravate symptoms of pneumonia
  - Cardiac effect-2 days later











## **Managing Risks from Nanomaterials**

- Managing unknown risk is not a new phenomena in an R&D environment, ESH approach is well tested:
  - Make conservative assumptions about risk, (treat materials as if toxic or hazardous until proven otherwise)
  - Measure the material, (using best available methodologies-establish background)
  - Establish the most effective available controls. (best practices)









## Foundation - "Precautionary Principle"

In conformance with the general principle in the National Research Council's *Prudent Practices for Handling Hazardous Chemicals in Laboratories*, engineered nanomaterials will be treated as though they are a toxic and otherwise hazardous material until empirical evidence shows otherwise.









## "Approach to Nanomaterial ES&H" (Scope)

- 1. Introduction
- Conceptual Foundations
- 3. Controls for R&D Laboratory Operations
- 4. Verifying Program Effectiveness
- 5. Transportation of Nanomaterials
- Management of Nanomaterials-Bearing Waste Streams
- 7. Management of Nanomaterial Spills
- 8. Example Industrial Hygiene Sampling Protocol









## **Control Methodology**

- Use Work Planning to define risk and controls
- Use Good Work Practices, e.g., substitution, Engineering controls, std lab controls, good housekeeping & sanitation
- Apply Controls in a Graded Approach



Embedded Nanostructures
(Nanoscaled tin-bismuth alloys
embedded in aluminum matrix)



Fixed on a matrix (thin films on silica)



Suspended in Liquids (nanotubes in water)



Dry dispersible, agglomerates or aggregates (SWN powder)

**LOW RISK** 

HIGH RISK









## **Engineering Controls**

 In general, standard control techniques such as local exhaust ventilation systems are considered to be effective for capturing airborne nanoparticles



**Snorkel Exhaust** 



Hoods

HEPA recommended for dispersables









## Other engineering controls...



Portable HEPA



A documented hazard analysis is required before using another method.















## Other engineering controls...

HEPA Filtered Enclosure

Exhausted to Building Exhaust System











**Exposure Control-PPE** 

Dermal Exposure (Gloves & lab coats)

 Follow lab standard best practices. (polymer gloves e.g., nitrile)



**Safety Glasses** 



•PPE that protects against gasses should be effective. (minimum half-mask P-100 cartridge)









## **Identify Potentially Exposed Workers**

- Identify "nano-particulate workers" those who;
  - Handle nano-particulates that have potential to become airborne
  - Routinely spends time in area where nano-particulates have potential to become airborne
  - Works on equipment that might be contaminated with materials that could foreseeablly released during servicing.
- Keep track of N-P workers









#### **Baseline NP Workers**

- Provide nano-particulate workers with baseline physical examinations
  - Offer a baseline medical evaluation and periodic medical monitoring consisting of routine non-specific medical monitoring including, for example, urinalysis, blood chemistry, and pulmonary function.
  - If involved in any incident that results in an unexpected and/or unusually high exposure to nanomaterials, through any route of entry, examined by the home Laboratory's occupational medical clinic for a post-incident evaluation as per OSHA 1910.1450(g)(1)(i).









#### **Baseline Labs**

- Conduct workplace characterization & worker exposure assessments
  - Conduct "baseline" monitoring prior to startup and periodically thereafter
  - Use direct-reading particulate measuring devices to screen for suspect emissions and atypical conditions
  - Use more sophisticated techniques, to collect and analyze samples that will be used to characterize emissions and potential exposures.
- Approach doc contains an example of a sampling protocol (currently being used at ORNL).









## **Transportation**

## Nanomaterials 3 possible categories

#### 1. DOT Hazmat:

Follow existing DOT requirements for hazardous substances that fall under 49
 CFR

## 2. Suspected DOT Hazmat:

Follow DOT requirements for samples

#### 3. Non-DOT:

- Packing Group I packaging
- Descriptions of the materials (MSDS or other information)
- Notifications to receiver of incoming shipment
- Recommend using HazMat Shipper, but not required.
- Label inner package

#### CAUTION

Nanomaterials Sample

Consisting of (Technical Description Here)

Contact: (POC)

at (Contact number)

in Case of Container Breakage.









## **Waste Management**

- Nanomaterial-bearing waste streams consist of;
  - Nanomaterials (e.g., carbon nanotubes)
  - Liquid suspensions containing nanomaterials
  - Solid matrixes containing, or coated with, nanomaterials that can be released to the air or leach into liquids. (This would cover contaminated PPE).
  - Commercially available chemicals containing nanomaterials.
- All nanomaterial waste is <u>collected</u> and characterized as either hazardous or non-hazardous (40 CFR 261.10-38 or equivalent state regs)
  - No nanomaterial waste goes to regular trash or down the drain
  - All waste containers are labeled with "contains nanomaterial" & characterization info then sent to waste management.









## **Spills**

- Liquid or solid, procedure similar
  - Place barriers that will minimize air currents across the spill surface
  - Sticky pad at exit
  - Wet-wipe or dedicated HEPA VAC
    - Log use to identify potentially incompatible materials
  - Treat all material generated during spill clean-up as nano-bearing waste.
- Issue: How do we determine that an impacted area is clean???









#### **Risk Communications**

Risk Communications is a crucial aspect of any emerging technology

- ➤ A negative issue at any NSRC is an issue for all and perhaps on the entire nano industry.
- ➤ Risk Communication can have a regional "perception" and require a tailored approach
- ➤ Approach Doc does not address this... yet.
- ➤ DOE Nanomaterial Communication Group established









#### **Risk Communications**

At BNL risk communication has been shaped by historical

events (reactors)

BNL established infrastructure to re-build trust and open up lines of communication;

- Community Relations Office
- Community Advisory Committee
- Executive Roundtable (local and state politicians)
- Nanotechnology communications plan in place
- •Identify spokes person(s) (trained and knowledgeable)
- Community Presentations (at CAC and ER)
- Employee communication (roundtable mtgs)
- •Bulletin articles (on the science and safety nano 101)
- •Frequently asked questions set to help spokes people.









## **Summary**

- Further research is necessary to quantify the risks of engineered nanomaterials (toxicity, health effects, environmental impacts) needs to be a balanced strategy that is adequately resourced.
- Standards will evolve, positive progress in nanotechnology (research and commercialization) requires standards based on solid science and engineering.
- •In the interim, potential risks must be managed to protect workers, public and the environment from the impacts of nanomaterials (must be conservative and defensible)
- Don't discount the "perceived risk"
  - The NSRCs are continually updating the approach document as new information emerges invite constructive criticism.









#### **Further Information**

http://www.bnl.gov/cfn/

Hoey@bnl.gov







